108 research outputs found

    Disparity-compensated view synthesis for s3D content correction

    Get PDF
    International audienceThe production of stereoscopic 3D HD content is considerably increasing and experience in 2-view acquisition is in progress. High quality material to the audience is required but not always ensured, and correction of the stereo views may be required. This is done via disparity-compensated view synthesis. A robust method has been developed dealing with these acquisition problems that introduce discomfort (e.g hyperdivergence and hyperconvergence...) as well as those ones that may disrupt the correction itself (vertical disparity, color difference between views...). The method has three phases: a preprocessing in order to correct the stereo images and estimate features (e.g. disparity range...) over the sequence. The second (main) phase proceeds then to disparity estimation and view synthesis. Dual disparity estimation based on robust block-matching, discontinuity-preserving filtering, consistency and occlusion handling has been developed. Accurate view synthesis is carried out through disparity compensation. Disparity assessment has been introduced in order to detect and quantify errors. A post-processing deals with these errors as a fallback mode. The paper focuses on disparity estimation and view synthesis of HD images. Quality assessment of synthesized views on a large set of HD video data has proved the effectiveness of our method

    Objective View Synthesis Quality Assessment

    Get PDF
    International audienceView synthesis brings geometric distortions which are not handled efficiently by existing image quality assessment metrics. Despite the widespread of 3-D technology and notably 3D television (3DTV) and free-viewpoints television (FTV), the field of view synthesis quality assessment has not yet been widely investigated and new quality metrics are required. In this study, we propose a new full-reference objective quality assessment metric: the View Synthesis Quality Assessment (VSQA) metric. Our method is dedicated to artifacts detection in synthesized view-points and aims to handle areas where disparity estimation may fail: thin objects, object borders, transparency, variations of illumination or color differences between left and right views, periodic objects... The key feature of the proposed method is the use of three visibility maps which characterize complexity in terms of textures, diversity of gradient orientations and presence of high contrast. Moreover, the VSQA metric can be defined as an extension of any existing 2D image quality assessment metric. Experimental tests have shown the effectiveness of the proposed method

    Dense long-term motion estimation via Statistical Multi-Step Flow

    Get PDF
    International audienceWe present statistical multi-step flow, a new approach for dense motion estimation in long video sequences. Towards this goal, we propose a two-step framework including an initial dense motion candidates generation and a new iterative motion refinement stage. The first step performs a combinatorial integration of elementary optical flows combined with a statistical candidate displacement fields selection and focuses especially on reducing motion inconsistency. In the second step, the initial estimates are iteratively refined considering several motion candidates including candidates obtained from neighboring frames. For this refinement task, we introduce a new energy formulation which relies on strong temporal smoothness constraints. Experiments compare the proposed statistical multi-step flow approach to state-of-the-art methods through both quantitative assessment using the Flag benchmark dataset and qualitative assessment in the context of video editing

    Estimation de mouvement dense entre images distantes : intégration combinatoire multi-steps et sélection statistique

    Get PDF
    National audiencePour traiter le problème de la mise en correspondance dense entre images distantes, nous proposons une méthode d'intégration combinatoire multi-steps permettant de construire un grand ensemble de champs de mouvement candidats via de multiples chemins de mouvement. Une sélection du champ optimal est ensuite réalisée en utilisant, en plus des techniques d'optimisation globale couramment utilisées, un traitement statistique exploitant la densité spatiale des candidats ainsi que leur cohérence forward-backward. Les expériences réalisées dans le domaine de l'édition vidéo montrent les bonnes performances que notre méthode permet d'obtenir

    Dense motion estimation between distant frames: combinatorial multi-step integration and statistical selection

    Get PDF
    International audienceAccurate estimation of dense point correspondences between two distant frames of a video sequence is a challenging task. To address this problem, we present a combinatorial multistep integration procedure which allows one to obtain a large set of candidate motion fields between the two distant frames by considering multiple motion paths across the video sequence. Given this large candidate set, we propose to perform the optimal motion vector selection by combining a global optimization stage with a new statistical processing. Instead of considering a selection only based on intrinsic motion field quality and spatial regularization, the statistical processing exploits the spatial distribution of candidates and introduces an intra-candidate quality based on forward-backward consistency. Experiments evaluate the effectiveness of our method for distant motion estimation in the context of video editing

    Dense motion estimation between distant frames: combinatorial multi-step integration and statistical selection

    Get PDF
    International audienceAccurate estimation of dense point correspondences between two distant frames of a video sequence is a challenging task. To address this problem, we present a combinatorial multistep integration procedure which allows one to obtain a large set of candidate motion fields between the two distant frames by considering multiple motion paths across the video sequence. Given this large candidate set, we propose to perform the optimal motion vector selection by combining a global optimization stage with a new statistical processing. Instead of considering a selection only based on intrinsic motion field quality and spatial regularization, the statistical processing exploits the spatial distribution of candidates and introduces an intra-candidate quality based on forward-backward consistency. Experiments evaluate the effectiveness of our method for distant motion estimation in the context of video editing

    Multi-step flow fusion: towards accurate and dense correspondences in long video shots

    Get PDF
    International audienceThe aim of this work is to estimate dense displacement fields over long video shots. Put in sequence they are useful for representing point trajectories but also for propagating (pulling) information from a reference frame to the rest of the video. Highly elaborated optical flow estimation algorithms are at hand, and they were applied before for dense point tracking by simple accumulation, however with unavoidable position drift. On the other hand, direct long-term point matching is more robust to such deviations, but it is very sensitive to ambiguous correspondences. Why not combining the benefits of both approaches? Following this idea, we develop a multi-step flow fusion method that optimally generates dense long-term displacement fields by first merging several candidate estimated paths and then filtering the tracks in the spatio-temporal domain. Our approach permits to handle small and large displacements with improved accuracy and it is able to recover a trajectory after temporary occlusions. Especially useful for video editing applications, we attack the problem of graphic element insertion and video volume segmentation, together with a number of quantitative comparisons on ground-truth data with state-of-the-art approaches

    Semi-automatic Liver Tumor Segmentation in Dynamic Contrast-Enhanced CT Scans Using Random Forests and Supervoxels

    Get PDF
    International audiencePre-operative locoregional treatments (PLT) delay the tumor progression by necrosis for patients with hepato-cellular carcinoma (HCC). Toward an efficient evaluation of PLT response, we address the estimation of liver tumor necrosis (TN) from CT scans. The TN rate could shortly supplant standard criteria (RECIST, mRECIST, EASL or WHO) since it has recently shown higher correlation to survival rates. To overcome the inter-expert variability induced by visual qualitative assessment, we propose a semi-automatic method that requires weak interaction efforts to segment parenchyma, tumoral active and necrotic tissues. By combining SLIC supervoxels and random decision forest, it involves discriminative multi-phase cluster-wise features extracted from registered dynamic contrast-enhanced CT scans. Quantitative assessment on expert groundtruth annotations confirms the benefits of exploiting multi-phase information from semantic regions to accurately segment HCC liver tumors

    Segmentation, Classification, and Quality Assessment of UW-OCTA Images for the Diagnosis of Diabetic Retinopathy

    Full text link
    Diabetic Retinopathy (DR) is a severe complication of diabetes that can cause blindness. Although effective treatments exist (notably laser) to slow the progression of the disease and prevent blindness, the best treatment remains prevention through regular check-ups (at least once a year) with an ophthalmologist. Optical Coherence Tomography Angiography (OCTA) allows for the visualization of the retinal vascularization, and the choroid at the microvascular level in great detail. This allows doctors to diagnose DR with more precision. In recent years, algorithms for DR diagnosis have emerged along with the development of deep learning and the improvement of computer hardware. However, these usually focus on retina photography. There are no current methods that can automatically analyze DR using Ultra-Wide OCTA (UW-OCTA). The Diabetic Retinopathy Analysis Challenge 2022 (DRAC22) provides a standardized UW-OCTA dataset to train and test the effectiveness of various algorithms on three tasks: lesions segmentation, quality assessment, and DR grading. In this paper, we will present our solutions for the three tasks of the DRAC22 challenge. The obtained results are promising and have allowed us to position ourselves in the TOP 5 of the segmentation task, the TOP 4 of the quality assessment task, and the TOP 3 of the DR grading task. The code is available at \url{https://github.com/Mostafa-EHD/Diabetic_Retinopathy_OCTA}

    Estimation de mouvement dense long-terme et évaluation de qualité de la synthèse de vues. Application à la coopération stéréo-mouvement.

    No full text
    Film and consumer electronics industries have known in the last few years huge technological improvements to capture, transmit and display high-quality monoscopic and stereoscopic video content. These improvements aim at providing to the viewer the most realistic viewing experience. Due to artistic intentions or physical limitations to efficiently capture and transmit video contents, it is sometimes necessary to combine simultaneously captured and synthetic data while taking care to maintain a photo-realistic rendering. To efficiently process captured and synthetic content simultaneously, production and post-production operators need to be assisted by sophisticated automatic tools. Among these tools, we thoroughly investigated both view synthesis quality assessment and long-term dense motion estimation issues. 3D autostereoscopic displays rely on the generation of realistic-looking virtual viewpoints through disparity estimation and view interpolation involved together within Depth-Image-Based Rendering (DIBR) algorithms. Despite recent advances, DIBR algorithms do not always provide artifact-free synthesized views and induce new types of artifacts whose impact can be harmful for the observer. Our contribution in this context has been to develop and evaluate a new full-reference objective image quality assessment metric dedicated to view synthesis quality assessment. Also required by recent applications such as scene segmentation or dynamic scene analysis techniques, long-term dense displacement fields allow to propagate synthetic data to the whole sequence in the context of high quality video editing. However, state-of-the-art optical flow estimators show strong limitations toward long-term requirements since classical optical flow assumptions are not valid for non-consecutive frames. Therefore, we proposed several contributions to long-term dense motion estimation based on multi-step optical flow vectors. First, a sequential fusion approach including a spatio-temporal multilateral filtering has been investigated toward long-term dense correspondences robust to temporary occlusions. Then, an alternative method has been studied based on combinatorial integration and statistical selection. Finally, we proposed multi-reference frames strategies to correlate trajectories estimated with respect to multiple reference frames selected according to motion quality criteria. Our contributions in both contexts offers new perspectives, especially for joint stereo and motion processing. In this direction, an automatic disparity correction framework using long-term dense displacement fields has been addressed.Les nouvelles technologies de la vidéo numérique tendent vers la production, la transmission et la diffusion de contenus de très haute qualité, qu'ils soient monoscopiques ou stéréoscopiques. Ces technologies ont énormément évolué ces dernières années pour faire vivre à l'observateur l'expérience la plus réaliste possible. Pour des raisons artistiques ou techniques liées à l'acquisition et à la transmission du contenu, il est parfois nécessaire de combiner la vidéo acquise à des informations de synthèse tout en veillant à maintenir un rendu photo-réaliste accru. Pour faciliter la tâche des opérateurs de production et post-production, le traitement combiné de contenus capturés et de contenus de synthèse exige de disposer de fonctionnalités automatiques sophistiquées. Parmi celles-ci, nos travaux de recherche ont porté sur l'évaluation de qualité de la synthèse de vues et l'élaboration de stratégies d'estimation de mouvement dense et long-terme. L'obtention d'images synthétisées de bonne qualité est essentielle pour les écrans 3D auto-stéréoscopiques. En raison d'une mauvaise estimation de disparité ou interpolation, les vues synthétisées générées par DIBR font cependant parfois l'objet d'artéfacts. C'est pourquoi nous avons proposé et validé une nouvelle métrique d'évaluation objective de la qualité visuelle des images obtenues par synthèse de vues. Tout comme les techniques de segmentation ou d'analyse de scènes dynamiques, l'édition vidéo requiert une estimation dense et long-terme du mouvement pour propager des informations synthétiques à l'ensemble de la séquence. L'état de l'art dans le domaine se limitant quasi-exclusivement à des paires d'images consécutives, nous proposons plusieurs contributions visant à estimer le mouvement dense et long-terme. Ces contributions se fondent sur une manipulation robuste de vecteurs de flot optique de pas variables (multi-steps). Dans ce cadre, une méthode de fusion séquentielle ainsi qu'un filtrage multilatéral spatio-temporel basé trajectoires ont été proposés pour générer des champs de déplacement long-termes robustes aux occultations temporaires. Une méthode alternative basée intégration combinatoire et sélection statistique a également été mise en œuvre. Enfin, des stratégies à images de référence multiples ont été étudiées afin de combiner des trajectoires provenant d'images de référence sélectionnées selon des critères de qualité du mouvement. Ces différentes contributions ouvrent de larges perspectives, notamment dans le contexte de la coopération stéréo-mouvement pour lequel nous avons abordé les aspects correction de disparité à l'aide de champs de déplacement denses long-termes
    • …
    corecore